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In 1874, Georg Cantor, then aged 29 and a young professor at Halle University, 

published a four-page note in Crelle’s Journal, demonstrating that the set of 

algebraic numbers is countable, and the set of real numbers uncountable. The 

article was revolutionary because, for the first time, infinity was no longer 

considered an unattainable limit but rather a potential object of investigation. 

The legacy of this work was extraordinary: not only did it herald the dawn of set 

theory – in fact, a theory of infinity – it also contained the embryonic beginnings 

of the continuum problem, which would dominate Cantor’s later years and 

remains the driving force behind the development of this theory. Although once 

the object of rather overblown fascination, itself fuelled by a misunderstanding, 

this theory is now largely unknown, at the very moment when early signs of a 

possible solution to Cantor’s continuum problem are beginning to emerge. 

This text outlines the context and content of Cantor’s article, before moving 

on to discuss the two main developments it entailed, namely the construction of 

transinfinite ordinals, including the rather amusing application to Goodstein 

sequences, and the continuum problem, including the frequently encountered 

misinterpretation of the significance of Gödel and Cohen’s results, as well as 

Woodin’s recent results, which hint at what could be a future solution. 

 

A SHORT NOTE AND TWO SIMPLE RESULTS 

1. The author 

George Cantor was born in St Petersburg in 1845, to a Russian mother and 

a German businessman father who was of Jewish origin but had converted to 

Protestantism. He spent his early years in Russia. The family returned to 

Germany when Georg was 11 years old, first to Wiesbaden and then Frankfurt. 

Cantor attended the Realschule in Darmstadt, where his mathematical talents 

were remarked upon, followed by the Zurich Polytechnic in 1862, and, from 1863 
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onwards, Berlin University, when he was awarded the equivalent of a master’s in 

1867. 

In 1869, at the age of 24, he defended his thesis on number theory, 

received his accreditation to supervise research, and obtained a post at Halle 

University (Saxony-Anhalt). There, under the influence of his colleague Eduard 

Heine (1821-1881), he turned to analysis, focusing on the problem of the 

uniqueness of the representation of a function by trigonometric series, which he 

solved positively in 1870. The question would continue to play an important 

background role in Cantor’s thinking on the development of a theory of sets, in 

particular through the study of what are known as sets of uniqueness. 

 

Figure 1: The young Georg Cantor (at the time of his 1874 article?). 

From 1872 onwards, Cantor corresponded with Richard Dedekind (1831-

1916), who was 14 years his senior and had just put forward the definition of 

Dedekind cuts of real numbers.
1
 It was in this context that Cantor became 

interested in issues relating to what is now known as countability, i.e. the 

possibility of enumerating the elements of a set. The fundamental result we will 

discuss below, namely the uncountability of the set of real numbers, was 

announced for the first time in a letter to Dedekind dated 7 December 1873. It 

was published the following year in Crelle’s Journal, under the title “Über eine 

Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen”.
2
 This short article 

                                                 
1. A Dedekind cut is a partition of the set of rational numbers into two subsets A and B, such that any element 
of A is less than any element of B; Dedekind demonstrated that the set of cuts behaves exactly as one would 
expect the set of real numbers to behave, with the cut (A,B) representing the unique real number between A 
and B. Dedekind cuts can thus be used to construct real numbers.  
2. “On a Property of the Collection of All Real Algebraic Numbers”. 
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contains two results relating to the possibility, or not, of numbering real 

numbers. 

2. A positive result … 

Real numbers are the coordinates of the points on a straight line. In 

particular, they include the integers 0, 1, 2, etc. and rational numbers in the 

form p/q, where p,q are integers and q is non-zero. They also include many 

irrational numbers. A real (or complex)  is termed algebraic if there exists at 

least one algebraic equation with integer coefficients for which  is the solution. 

All integers are algebraic since the integer n is the (unique) solution to the 

equation x – n = 0. All rational numbers are algebraic since the rational p/q is 

the (unique) solution to the equation qx – p = 0. A typical example of a non-

rational algebraic number is 2 , which is the solution to the equation x² – 2 = 0. 

There are a great many algebraic numbers: any real number that can be written 

in integers using the operations 3 5, , , /, , , ,...    is algebraic. There are 

also a great many more besides: since Abel, it has been known that algebraic 

equations exist whose solutions cannot be expressed using the aforementioned 

operations. 

And yet in his text Cantor demonstrates that: 

Theorem 1 Algebraic numbers can be counted. 

In other words: there are not more algebraic numbers that there are natural 

integers. Cantor’s demonstration is not hard to follow: 

Demonstration. For any algebraic equation E 

  

let us call height of E the integer 

 

and say that an algebraic number α admits height N if α is the root of at 

least one equation of height N. Note that a given algebraic number 

certainly admits an infinity of heights. 

By construction, the height of an equation is at least 2. There is only one 

equation of height 2, namely x = 0, and, as a consequence, only one real 

admitting height 2, namely 0.  

In the same way, there are four equations of height 3, namely 
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and, as a consequence, three reals admitting height 3, namely -1, 0, 1. 

Thus, for any value of the integer N, there exists only a finite number of 

equations of height N, with an upper limit of (2N)N, and, it follows, a finite 

number of algebraic reals admitting height N, with an upper limit of 

(2N)N ∙ N, since an nth-degree equation has at the most n roots. 

Algebraic numbers can therefore be enumerated as follows: first, all the 

algebraic numbers admitting height 2 are enumerated, followed by all the 

algebraic numbers admitting height 3, and then by all the algebraic 

numbers admitting height 4, etc. As every algebraic number admits a 

height, the list that this creates – which is actually redundant – contains 

all the algebraic numbers. 

3. … and a negative result … 

On the other hand, the situation is different if one considers the collection of 

all real numbers, and this is the second result demonstrated by Cantor: 

Theorem 2 Real numbers cannot be counted. 

Demonstration. Let α0, α1, etc. be a given sequence of real numbers. We 

will demonstrate a real number α that is different from each of the 

numbers αn, which shows that no enumeration of real numbers can be 

exhaustive. Without loss of generality, we assume that α0 = 0 and α1 = 1. 

 We will attempt to extract a sub-sequence αn0, αn1, etc. from the 

sequence of αns, verifying  

 

We start from n0 = 0 and n1 = 1, and thus from αn0 = 0 and αn1 = 1. We 

proceed by induction. Suppose i > 0 and ni constructed. One of the two 

following statements must be true. 

→ Either no integer n verifies 

(2)  n > ni  and αn is between and αni (strictly) 

in which case we set down  and α is thus distinct from 

αn for any n. 

→ Or there exists n verifying (2) and thus we define ni+1 as being the 

smallest such integer. Note that, in this case, for each integer n 

verifying , the real αn is not between αni and αni+1 (else this 

integer n would have been chosen for ni+1). 
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If the construction is not aborted, we have obtained real numbers αni, 

verifying (1). The completeness of implies that there exists at least one 

real number α between the two half-sequences, i.e. verifying 

 

Thus α cannot be equal to any of the reals αn. By (3), this is clear when n 

is in the form ni. Otherwise, there exists i such that n is between ni and 

ni+1. In this case however, α, by construction, is between and , 

whereas, as we noted above, αn is not. Once again then, this gives us 

 

Cantor notes that, taken together, Theorems 1 and 2 allow for the re-

demonstration of the existence of non-algebraic real numbers, which had been 

established for the first time by Liouville in 1851. 

 

4. Why these results are remarkable 

The infinite has appeared in mathematical texts since Antiquity, but it 

appears in counter-relief, as a negative property (the infinite is that which is not 

finished) and an unattainable limit, not as an object of study in itself. 

Towards the middle of the 19th century, the thinking in this area gained in 

maturity and the notion of the infinite began to be considered in more 

mathematical terms. For example, in a posthumous text entitled Paradoxien des 

Unendlichen (“Paradoxes of the Infinite”), published in 1851, Bernhard Bolzano 

(1781–1848) observed that there are as many elements in the real interval [0,5] 

as in the interval [0,12] and that, therefore, in an infinite collection, a proper 

part can be as great as the whole. But this was no more than what Thâbit bin 

Qurrâ al-Harrânî (836–901) had done a thousand years earlier. Nevertheless, 

infinity would remain a terra incognita and the object of neither result nor 

demonstration, or even definition; it was only around 1888 that Richard 

Dedekind explicitly put forward the property mentioned above as the definition of 

the infinite. 

What is profoundly innovative in Cantor’s article is the fact that it 

demonstrates the properties of the infinite. What Cantor does is to demonstrate 

the first theorem on infinity – in the event, that there exists not one infinity, but 

at least two: the infinity of algebraic numbers is the same as that of integers, but 

it is not the same as that of real numbers. Aside from the statement of the 

result, which is perhaps not so important in itself, what is innovative is the 
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possibility of its very existence: with Cantor, infinity becomes an object of study. 

The letter to Dedekind of December 1873 is the point of departure for a 

completely new mathematical theory – the theory of the infinite, which would 

come to be known as set theory. It is rare that the point of departure for what 

would become such an important current of thought can be dated with such 

precision. 

One point is remarkable. Cantor entitled his article “On a Property of the 

Collection of All Real Algebraic Numbers”, which corresponds to the first theorem 

but not to the second, and yet it is the latter which to us seems the most 

innovative result. As Dauben suggests,
3
 it is worth asking whether the emphasis 

placed on the positive result (it is possible to enumerate …), as opposed to the 

negative result (it is not possible to enumerate …), might not be a precaution 

Cantor takes to avoid seeing his article rejected by Leopold Kronecker (1823–

1891), the then editor of Crelle’s Journal, who had the greatest contempt for the 

notion of the infinite and for all speculations that we would now call non-

effective. 

5. The diagonal argument 

In 1891, eighteen years after the article of 1874, Cantor published a new 

and even simpler and more striking demonstration of the second theorem. It was 

this that went down in history as the authoritative demonstration. The so-called 

diagonal argument
4
 that is the basis of this demonstration has elements in 

common with a construction developed in 1875 by Paul du Bois-Reymond (1831-

1889), but the combination of self-reference and a negation, which is the 

decisive point, seems to be used for the first time in Cantor’s text. As we now 

know, this argument gave rise to great things, since it is the fundamental 

technical ingredient in several of the great results of logic produced in the 20th 

century, in particular Russell’s paradox, Gödel’s incompleteness theorems, 

Turing’s construction of undecidable sets, and hierarchy theorems in complexity 

theory. 

Demonstration of Theorem 2 by the diagonal argument. Let α0, α1, etc. be 

a given sequence of real numbers. We will once again demonstrate a real 

number α that is different from each of the αns. This time, we will not use 

                                                 
3. J. W. Dauben, Georg Cantor: His Mathematics and Philosophy of the Infinite, Cambridge, Mass., 1979; reed. 
1990. 
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the order of the real numbers, but rather the existence of a decimal 

development for each real number. For each integer n, there exists an 

infinite sequence  of digits between 0 and 9, such that we 

have 

 

where E(x) designates the integer part of x, and this sequence is unique if 

there is a requirement that the digits αn,i must not all be equal to 9 from a 

certain rank onwards. We thus set down  and 

let α be the real whose decimal development is 

 

Thus, regardless of n, the real α is different from αn, since the nth digit of 

the development of αn is αn,n, whereas that of α is  which is different 

from αn,n by construction. 

 

 

THE LEGACY (1): ORDINALS 

The reach of Cantor’s article was quite extraordinary: set theory as a whole, 

and, from there, a significant proportion of 20th-century mathematics, can be 

traced back to it. This legacy can be described using Cantor’s later work as a 

point of departure. Still in Halle, where he became a professor in 1879 at the age 

of 34, Cantor was becoming increasingly interested in what would become set 

theory. Between 1879 and 1884 he published a series of six articles in 

Mathematische Annalen; these would form the basis of the theory. 

 

Figure 2: Georg Cantor, probably in the 1880s. 
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We will distinguish two main themes within this legacy, the first being the 

possibility to count beyond the finite, which leads to the notion of the transfinite 

ordinal. 

6. A theory of transfinite numbers 

What Cantor showed was that once the conceptual barrier that made the 

infinite inaccessible had been crossed, there was nothing to prevent the 

development of an arithmetic of infinite numbers (or rather, transinfinite 

numbers, i.e. beyond finite), one very similar to the arithmetic of integers, and 

which could be used in particular for inductive demonstrations.  

The idea is to extend the sequence of integers, i.e. to count beyond 0, 1, 2, 

etc. To do this, the principle that Cantor uses to underpin his construction is a 

well-known property for integers and one that is found at the heart of 

demonstrations by induction, namely that any non-empty set has a smaller 

element. What Cantor observes is that, if we maintain this principle, there is only 

one way to extend the sequence of integers. For example, there must exist a 

smaller transfinite number that is greater than all the integers, and Cantor calls it 

ω. Next, there must exist a smaller transfinite number that is greater than ω, 

and Cantor calls it ω+1. Next, of course, come ω+2, ω+3, etc., followed by a 

smaller transfinite number that is greater than all the ω+ns and which is called 

ω+ω, or ω×2. We continue with ω×2+1, and then a little later on, with ω×3, and 

so on. There exists a smaller transfinite number that comes after all the ω×ns, 

and it is written as ω×ω, or ω2. There’s no reason to stop now, and so further 

down the line we come to ω3 and ω4, then ωω and 
2

 , and eventually even to 


  … and beyond that, to many more transfinite numbers besides. 

What Cantor demonstrates – without however convincing the very reticent 

Kronecker – is that the above description is not simply a gratuitous and uncertain 

extrapolation, but rather a coherent system that can be used in demonstrations. 

For example, at the same time as the Swedish mathematician Ivar Bendixson 

(1861–1935), Cantor himself used it in 1883 in his study of sets of uniqueness to 

provide a demonstration by induction on transfinite numbers. This produced what 

has remained a famous result on the structure of the closed subsets of a real 

straight line, namely that any such set can be written as the meeting of a 

countable set and a set in which all the points are accumulation points.  
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7. An amusing application of ordinals to a mathematical 
demonstration 

Transfinite numbers – now known as ordinals – are a powerful means to 

demonstrate mathematical results. What is interesting – and can appear 

paradoxical – is that the use of infinite ordinals sometimes makes it possible to 

demonstrate properties of finite objects that would otherwise remain 

inaccessible. A spectacular example is provided by the convergence of Goodstein 

sequences in arithmetic. These are sequences of integers defined by a simple 

induction from the notion of development in iterated base p. Developing an 

integer n in base p consists in decomposing n in the form of a decreasing sum 

1 kn n

1 k
n p c ... p c      

where the figures ci range between 1 and p – 1, and the exponents ni are 

integers, necessarily strictly smaller than n. One can then express the exponents 

ni themselves in base p, and iterate the process. The expression thus obtained 

can be called the iterated development of n in base p. For example, the 

development of 26 in base 2 is 24 + 23 + 21: the development of 4 is 2², that of 

3 is 21+1, and, finally, the iterated development of 26 in base 2 is 

12 12 2 1 12 2 2
  . 

Definition 1 (i) For q ≥ 2, Tp,q : is defined as follows: Tp,q (n) is the 

integer obtained by replacing every p by q in the iterated 

development of n in base p and by evaluating the result. 
 (ii) For each integer d, the Goodstein sequence in base d is 

defined as the sequence of integers g2 , g3 , …, defined by g2 

= d, then, inductively, gP+1 = Tp,p+1 (gp) – 1 if gp is not zero, 
and gP+1 = 0 if gp is zero. 

 
For example, starting with g2 = 26 one finds: 

1 12 1 3 12 2 1 1 3 3 1 1 27 4

2,3 2,3
T (26) T (2 2 2 ) 3 3 3 3 3 3 7625597485071 

         
  

hence g3 = 7625597485070. Once then does the same thing again, 

replacing 3 with 4, and so on and so forth. It seems clear that the sequence 

thereby obtained very rapidly tends towards infinity. And yet in 1942 Reuben 

Goodstein (1912–1985) demonstrated the following result: 

Theorem 3  For any integer d, the Goodstein sequence in base d 

converges towards 0: there exists an integer p verifying gp = 0. 

 

Demonstration. The argument is extremely simple if we use ordinal 

arithmetic. To do this, we introduce a function Tp,ω, analogous to Tp,q, for 

each integer p, but which goes from into the ordinals: Tp,ω (n) is the 
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ordinal obtained by replacing p by ω in the iterated development of n in 

base p. Thus, for example, we have  

 

The properties of the arithmetic of ordinals entail that each of the 

functions Tp,ω is a strictly increasing function. Thus, for  we set down 

 For each integer d, we thus have a sequence of ordinals 

 etc. Yet, by construction, for each p such as gp being non-zero, we 

have 

 

By construction, then, regardless of p, q, r verifying 2 , 

and regardless of n, we have  and, in particular, 

 The fundamental property of the sequence of 

ordinals, namely that any non-empty set has a smaller element, entails 

that any strictly decreasing sequence of ordinals must be finite. There thus 

necessarily exists an integer p such that  is zero, and therefore gp is 

also zero (Figure 5). 

 

Figure 3: Demonstration of Goodstein’s theorem: below, the integers, above, their 

images among the infinite ordinals, which erase the changes of base; this leaves only the 

-1s, which force the decrease so long as 1 is not yet reached. 

 

The essential point in the preceding demonstration is the existence of the 

ordinal ω, that is to say, the existence of a transfinite number that dominates all 

the integers in the same manner as ω does, i.e. the distance between 3 and ω is 

the same as that between 2 and ω. 

What is remarkable is that Theorem 3 – which is a pure result of arithmetic, 

in the sense that it is a stated in such a way as to bring into play only integers 

and their elementary operations, and which was demonstrated so simply using 

infinite ordinals – cannot be demonstrated without reaching for such a tool. 

Indeed, drawing on a method developed by Paris and Harrington in 1978, in 

1981 Kirby and Paris demonstrated that Goodstein’s theorem cannot be 
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demonstrated using Peano axioms alone, in other words, from within the 

framework of standard arithmetic. In one sense, this result legitimates 

Kronecker’s suspicion of Cantor’s methods;
5
 in another, it illustrates their 

visionary scope. 

8. Ordinals today 

Over a century later, tensions have cooled, the fundamental questions have 

been elucidated, and ordinals and transfinite induction are both part of 

mathematicians’ palette of tools. However, with the exception of mathematical 

logic and some aspects of theoretical computing (the termination of rewriting 

systems), which often exploit these tools, it has to be said that these elegant, 

powerful tools remain little used in core mathematics – with a few notable 

exceptions such as Martin’s Borel determinacy theorem. This is not very 

surprising to that extent that, in the end, mathematics makes only limited use of 

current infinity, that is to say, an infinity that is not simply the indefinite 

continuation of the sequence of integers. 

 

THE LEGACY (2): THE CONTINUUM PROBLEM 

The other direct legacy of the article of 1874 is the theory of cardinals and 

its central problem, the continuum problem, which entails determining the 

cardinal of the set of real numbers. Cantor sought the solution to the continuum 

problem for the rest of his life. Still in Halle – Kronecker’s opposition prevented 

him from finding a post in Berlin – he continued to develop his theory of sets, 

with notable results such as the diagonal argument of 1891 and the theory of the 

comparability of cardinalities in 1897. However, he never solved the continuum 

problem. His final years were rather sad. Although the scientific scope of his work 

had been widely recognised by his peers, his life from 1884 until his death in 

1918 was overshadowed by scientific polemics and above all by increasingly 

severe episodes of depression that led to him being committed to care 

institutions on several occasions. 

                                                 
5. Kronecker would certainly not have been reassured to learn that the smallest integer p for which the p-th 

term in Goodstein’s sequence in base 4 equals zero is
402653211

3 2 2  . 
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Figure 4: George Cantor, probably around 1900. 

The continuum problem for its part remained at the heart of set theory 

throughout the 20th century. This is more than ever the case today, given that 

hopes of a solution are beginning to emerge. 

 

9. An infinity of infinities 

Theorem 2 showed that there are at least two infinities that cannot be 

placed in bijective correspondence, namely the infinity of the set N of natural 

integers and the infinity of set R of real numbers. Intuitively, then, these 

infinities are not of the same size, and Theorem 2 introduces a new field of 

enquiry – the comparison of the size of infinities. 

As early as 1878, Cantor suggested formalising the comparison of sizes in 

the terms we still use today, namely the existence of bijections and injections: 

we say that a set A, whether finite or infinite, is the same size (or has the same 

cardinality) as a set B if there exists a bijection of A onto B; similarly, we say 

that A is at the most the same size (or has the same cardinality) as B if there is 

an injection of A into B. It should be noted that, in the case of finite sets, these 

definitions correspond closely to the standard comparison of numbers of 

elements. In 1897, Cantor – and, at the same time, Felix Bernstein (1878–1956) 

and Ernst Schröder (1841–1902) – would show that this comparison of 

cardinalities is a total order: if there is an injection of A into B and an injection of 

B in A, then there is also a bijection of A onto B. 

It should also be noted that the theory of infinite cardinalities soon became 

separate from that of transfinite ordinals: while counting and ordering are 
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equivalent tasks for finite sets, the same is not true of infinite sets. More 

precisely, there exists only one type of total order on a finite set of a given 

cardinality, whereas there exist multiple two-to-two non-isomorphic total orders 

on an infinite set. For example, from the point of view of size, and are 

equivalent, whereas they are not when provided with their usual orders. 

 

In this context, Theorem 2 states that there are at least two distinct infinite 

cardinalities. Cantor himself would demonstrate a much stronger result using a 

form of the diagonal argument. 

Theorem 4 The set of integers, its set of parts, the set of parts thereof, 

and so on, are two-to-two of different sizes. 

Demonstration. We start by demonstrating that, regardless of set E, there 

is no surjection, and certainly no bijection, of E onto the set of parts  

Let f be a given application of E in  We will show that f is not 

surjective by demonstrating a part of E that does not belong to the image 

of f. To this end, we set down  

Let α be a given element of E. One of the two following statements must 

be true. Either α is in A, which signifies that α does not belong to f(α). As α 

is in A, f(α) is not equal to A. Or α is the complement of A, which signifies 

that α belongs to f(α). As α is not in A, f(α) once again is not equal to A. 

Therefore A cannot belong to the image of the application f, yet this 

application is not surjective. 

This being demonstrated, set down  etc. 

According to the above, regardless of i, there cannot be a bijection of Ei 

onto Ei+1. Furthermore, for any non-empty set E, the application that 

sends X onto x if X is the singleton {x}, and onto a fixed element x0 , if 

this is not the case, is a surjection of  onto E. Consequently, for each 

i and j verifying  there exists a surjection of Ej onto Ei+1. Thus, if 

there existed a bijection of Ei onto Ej, we would deduce by composition a 

surjection of Ei onto Ei+1, in contrast to what we have seen above. 

 

The two ingredients of the diagonal argument can both be seen in Theorem 

4, namely the combination of self-reference (here, the simultaneous use of x and 

f(x), as with the diagonal digits ai,i in section 1), and a negation (x f(x) here 

and the use of ai,i * in section 1). 
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10. The continuum hypothesis 

As soon as there is an infinity of different infinite cardinalities, one obvious 

question is to determine the position of the cardinalities of the most common 

sets,  and . For the cardinality of , one can easily see that it is the smallest 

of the infinite cardinals: injects into any infinite set.
6
 According to Theorem 2, 

the cardinality of is strictly greater than that of . This is what we call the 

continuum problem:
7
 determining which infinity is the cardinality of . 

In 1877, before he had even established the existence of an infinity of 

infinities and their comparability, Cantor had predicted a solution to the 

continuum problem with the continuum hypothesis: 

Any infinite part of that is not in bijection with is in bijection with . 

The continuum hypothesis signifies that there is no set of a strictly 

intermediary size between those of and , i.e. in terms of cardinalities, that 

the cardinality of  (the continuum) is an immediate successor to that of  (the 

countable). 

Cantor never managed to demonstrate (or refute) the continuum 

hypothesis. The only notable result he would demonstrate with regard to the 

continuum problem is the so-called Cantor–Bendixson theorem on the structure 

of closed sets (mentioned above). This straightforwardly entails that any closed 

subset of  that is not in bijection with  is in bijection with the total : it can 

thus be said that closed sets fulfil the continuum hypothesis. Alas, Cantor was 

never able to obtain an analogous result for the more complicated subsets of – 

and the developments in set theory in the 20th century show that 

mathematicians of that time certainly lacked the technical means to do so. 

Nevertheless, Cantor’s later work, though it in no way solves the question, 

make it possible to formulate the continuum problem in the concise, symbolic 

form in which it is often stated today. The point of departure is another 

fundamentally important result from Cantor, adding considerable precision to 

Theorem 4 and to the Cantor–Bernstein–Schröder theorem. 

                                                 
6. In modern terms, there needs to be at least a weak form of the axiom of choice in order to confirm this 
statement; these on the whole minor questions would only arise later and do not really affect Cantorian theory 
of cardinals, which is, in the main, a theory of well-orderable sets, i.e. a theory where the axiom of choice is 
valid. 
7. In Cantor’s time, the set of real numbers was called the continuum. 



           

15 

Theorem 5 (Cantor) There exists a sequence of cardinalities indexed by the 

ordinals 1 10 2
... ... 

            such that any
8
 infinite set 

admits one (and only one) of the alephs as its cardinality.
9
 

Thus, not only is there an infinity of infinities, we also have a complete 

description of the structure of this family of infinities, i.e. a well-organised 

sequence indexed by the ordinals. Theorem 5 in particular shows that, for each 

cardinality , there exists a smaller cardinality that is strictly greater than , 

which is not at all obvious: on the face of it, it would have been quite possible for 

the order of cardinalities to include dense intervals, like the order of rational 

numbers. 

From this point onwards, 0 is the cardinality of , and the continuum 

problem becomes a case of determining which aleph is the cardinality of . The 

continuum hypothesis thus assumes the simple form card( )= 1, since 1 is, 

by definition, the immediate successor to 0 in the sequence of alephs. 

In addition, it is easy to define a bijection
10

 between  and  , and 

therefore between  and the set of applications of  in {0,1}. Since the 

cardinality of  is 0, it is natural to note the cardinality of {0,1}  as 02


, 

which is also therefore the cardinality of . With this formalism, the continuum 

hypothesis corresponds to the equality 

0

1
2


   

11. The development of a new discipline 

In 1900, David Hilbert (1862–1943) presented his famous list of 23 

problems for 20th-century mathematics to the International Congress of 

Mathematicians in Paris, with determining the truth or falsity of the continuum 

hypothesis ranked in first place. This is a sign that the reticence surrounding the 

use of infinity other than as an unattainable limit had been dispelled and that the 

fundamental nature of Cantor’s work had been recognised. Hilbert described the 

transfinite arithmetic of Cantor as “the most astonishing product of mathematical 

                                                 
8. Here again, it is necessary to specify “any well-orderable set” to take into account problems of choice. 
9.  is the first letter, aleph, of the alphabet. 

10. For example, it is possible to associate each real between 0 and 1 with the sequence di of 0 and 1 in its 

development in base 2, and to then associate this sequence with the part of N composed of indexes where this 

sequence equals 1 (if di = 1, i is in the part of N; if di = 0 is not in the part of N). 
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thought, one of the most beautiful realisations of human activity in the domain of 

the purely intelligible”. 

 Direct progress on the continuum problem was slow, since it could be 

achieved only once a considerable foundational base had been developed. 

Following on from the Cantor–Bendixson theorem demonstrating that closed sets 

fulfil the continuum hypothesis, one early result was the theorem demonstrated 

in 1916 by the 20-year-old Pavel Alexandroff (1896–1982): Borel sets fulfil the 

continuum hypothesis.
11

 We now know that this result was the best that could be 

produced at that time; indeed, this avenue of research could be pursued only 

from the 1970s onwards, with the development of what is known as the 

descriptive theory of modern sets, i.e. the close study of the subsets of . 

The great difficultly of the continuum problem, and, more generally, all 

problems bringing into play infinity – indeed, the one that made a solution 

practically impossible in Cantor’s time – was the absence of a precise and widely 

accepted conceptual framework to develop a theory and demonstrate results. 

Cantor did indeed propose what became a standard definition of the set (“any 

collection into a whole M of definite and separate objects m of our intuition or our 

thought; these objects are called the elements of M”). But that would not have 

been enough to define the rules of the game, namely determining where to start 

to demonstrate the properties of sets. At the same time as other thinkers, such 

as Cesare Burali-Forti (1861–1931) and Bertrand Russell (1872–1970), Cantor 

himself recognised the difficulties raised by the imprecision surrounding the 

notion of a defined object, and it was only at the beginning of the 20th century 

that these points began to be elucidated: what mattered to mathematicians was 

not defining what a set was, but simply obtaining a consensus as to the way in 

which sets function, that is to say, a point of departure from which to 

demonstrate theorems. In 1908, Ernst Zermelo (1871–1953) put forward an 

axiomatic system for sets, which was amended in 1922 by Adolf Fraenkel (1891–

1965). This system, known as the Zermelo–Fraenkel system or the ZF system, 

rapidly established itself as a standard point of departure for set theory, in the 

same way that the Euclidean system is a point of departure for geometry and the 

Peano system a point for departure for arithmetic. 

                                                 
11. But Alexandroff, disappointed at not having solved the continuum problem, became a theatre producer and 
only returned to mathematics years later. 
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12. Two major results … 

Once it had been established that the ZF system should be the point of 

departure for a theory of sets, the first stage towards a solution to the continuum 

problem was to determine if the continuum hypothesis is or is not a consequence 

of the axioms of this system. This is not the case: Kurt Gödel (1906–1978) –

followed, 20 years later, by Paul Cohen (1934–2007) – demonstrated two 

negative results. 

Theorem 6 (Gödel, 1938) Unless these are contradictory,
12

 the negation of 

the continuum hypothesis is not a consequence of the axioms of the ZF 

system. 

Theorem 7 (Cohen, 1963) Unless these are contradictory, the continuum 

hypothesis is not a consequence of the axioms of the ZF system. 

 

Figure 5: Kurt Gödel (left) and Paul Cohen (right) 

 

Gödel’s and Cohen’s theorems are rightly considered major steps forward. 

The demonstration of these theorems required the deployment of completely new 

means – the method of inner models in Gödel’s case, and the method of forcing 

in Cohen’s. Aside from the purely technical difficulties (which, even several 

decades on, remain substantial), these results necessitated a complete change in 

perspective on set theory, one analogous in many respects to the Copernican 

revolution or the discovery of non-Euclidean geometries: it entailed a shift from a 

vision of a single world of sets to one of a multiplicity of possible worlds. 

                                                 
12. This rhetorical note of caution is necessary because Gödel’s second theorem of incompleteness prevents us 
from establishing the non-contradictory character of the ZF system; it is therefore impossible to rule out a priori 
the hypothesis that this system is contradictory.  



           

18 

… and two misunderstandings 

In the later decades of the 20th century, the fate of set theory was scarcely 

happier than the personal fate of its creator, Georg Cantor. Two 

misunderstandings were at the origin of this situation. 

The first misunderstanding was due to the very success of set theory. What 

Zermolo was probably the first
13

 to grasp was the possibility of using sets as the 

unique basis of the totality of the mathematical edifice. Stated more precisely, it 

is possible to represent functions (Felix Hausdorff, 1918), integers (John von 

Neumann, 1923) and, from there, almost all mathematical objects, as sets. 

Although remarkable, this result – which was systematically deployed in the 

Bourbaki treatise a few years later – was taken to be much more than it actually 

is, which is a result of coding (or coordinisation) analogous to the possibility of 

coding the points of a plane with a couple of real numbers or with a complex 

number. Little concerned with accuracy, imitators saw an ontological result where 

there was only a question of coding, positing the dogma of “everything is a set” 

and having set theory play the role of an all-encompassing whole – a claim it 

never made for itself: it is difficult for a lay mathematician to believe that the 

integer 2 is the set {,{}}, since there is no intuition to support such an 

identity, and no demonstration of it can be adduced. It was therefore inevitable 

that the excessive enthusiasm aroused by this approach would be disappointed 

and that the on the whole minor applications of the theory to wider mathematics 

would entail a sentiment of rejection to match the initial hopes. The pedagogical 

excesses of the 1960s, stemming directly from the confusion between 

“everything can be represented by sets” and “everything is a set”, clearly did not 

restore the image of a misunderstood theory, one often imagined as the 

manipulation of diagrams of ellipses and crosses that were as abstract as they 

were devoid of mathematical meaning. The theory of sets is the theory of the 

infinite and it has very little to do with contemporary mathematicians’ – 

admittedly convenient – everyday use of an elementary overarching vocabulary. 

The second misunderstanding is due to the signification of Gödel’s and 

Cohen’s theorems. What the intelligent general public, and many 

mathematicians, have taken from these is that the continuum problem is an 

insoluble problem, and will remain so for eternity. Some imagine that it is 

                                                 
13. It seems that Cantor did not anticipate this aspect of the development of set theory. 
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possessed of a mysterious status, being neither true nor false, or else that it is 

intrinsically unknowable, or devoid of any true meaning. Gödel’s and Cohen’s 

results say something quite different, and much more simple: they say, or rather 

illustrate – because the idea had been known about since Gödel’s incompleteness 

theorems – that Zermelo-Fraenkel’s ZF system is incomplete, contains lacunae 

and does not exhaust the properties of sets. What is almost universally accepted 

is the fact that the ZF axioms express properties of sets that our intuition induces 

us to accept as true. In other words, we judge it opportune to take these axioms 

as a point of departure and to accept that their consequences are valid. But no 

one – in any case, no specialist of set theory – has ever claimed that the ZF 

axioms exhaust what we intuitively know about sets. This notion is now being 

explored, and it is quite possible that in the future a consensus will emerge as to 

the opportunity of adding new axioms, as and when we recognise new properties 

of sets and infinity as being pertinent. Gödel’s and Cohen’s results thus opened 

up the continuum problem far more than they closed it down. 

 The continuum problem today 

 

Almost 50 years since Cohen’s result, the continuum problem has not 

been solved, but important progress has been made and it is not 

inconceivable that a solution should emerge in the foreseeable 

future. The major development in set theory since the 1970s has 

been the gradual emergence, based on a considerable corpus of 

convergent results, of a consensus as to the opportunity of adding 

additional axioms to the ZF system, thereby affirming the existence 

of ever-greater infinites, which is merely a natural iteration of 

Cantor’s approach. These axioms, known as “large cardinals”, have 

varied technical forms. The most important today is the DP 

(projective determinacy) axiom: in the 1980s, D. A. Martin, J. Steel 

and H. Woodin demonstrated that the ZF+DP system provides an 

equally satisfying description of the world of countable sets as the ZF 

system provides for the world of finite sets, that is to say, a 

description which, in practice and heuristically, appears to be 

complete. Based on the ZF+DP system, the same is also true of the 

next level of complexity, that of topology and analysis in what are 

known as projective sets. This type of heuristic completeness has led 

to a general consensus about adding the DP axiom to the ZF axioms 

to create a new point of departure for set theory. 
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Figure 6: The mathematician Hugh Woodin (born in 1955) 

 

The situation for the next level in the scale of complexity – which is 

level 2 if arithmetic is level 0 and projective analysis level 1 – is less 

clear. For the moment, there is no consensus as to the axiom(s) 

which could play the same role for level 2 as the DP axiom plays for 

level 1. On the other hand, one remarkable result already exists, 

demonstrated by Hugh Woodin in 2001, namely that any axiom 

which, for level 2, produces the type of description produced by ZF 

for level 0, and ZF + DP for level 1, entails that the continuum 

hypothesis is false. This result is not yet the conclusive solution to 

the continuum problem since, on the one hand, Woodin’s theorem 

remains conditioned by a conjecture that is not as yet fully 

established, and, on the other, by the fact that there is no consensus 

as to what a complete description of level 2 might be. Nevertheless, 

we have here a result that seems to both tip the balance in favour of 

the falsity of the continuum hypothesis and to show that very 

important progress is possible with regard to the continuum problem. 

There is no reason to think that it will not be solved in the future. 

 

CONCLUSION 

In one sense, the continuum problem is a minor problem in mathematics; 

few applications really depend on the continuum hypothesis, and the only 

statements linked to it bring into play objects that are either very big or very 

complicated, and for this reason rather removed from the core of contemporary 

mathematics. That is probably one of the reasons why the continuum problem, 

which was first on Hilbert’s list of problems in 1900, was not mentioned a century 

later on in the list of Millennium Problems put forward by the Clay Institute;
14

 in 

the category of foundation problems, it was replaced there by the ‘P vs NP 

                                                 
14. Clay Mathematical Institute, Millennium Problems: http://www.claymath.org/millennium-problems  

http://www.claymath.org/millennium-problems
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problem’. On the other hand, this problem remains as fascinating as ever 

because it is both fundamental and so simply worded, and it remains the driving 

force behind research in set theory. It is certain that more will be known in a 

hundred years, and the author of these lines would be most curious to know 

where the continuum problem and the exploration of infinity will be by then. In 

any case, if one thing is certain it’s that Cantor, with his unassuming note of 

1874, opened up a world and has given mathematicians something to chew on 

for centuries. 
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